ASSIGNMENT 1

J. Elder

Overview

Linear Regression

- In the visual world, objects are often obscured or occluded by intervening objects, resulting in fragmented boundaries and a loss of shape information.
- One advantage of generative models is that they can fill in missing data based upon partial observation. In the context of our problem, this means that the missing portion of the boundary can be estimated. This is the problem of shape completion.
- We will evaluate our models by occluding a contiguous 10% portion of an object boundary, and then using our models to estimate these missing data.

Dataset

Linear Regression

- The dataset is drawn from the Hemera database of 150,000 blue-screened photoobjects.
- From these I have selected 350 animal objects and randomly partitioned them into training and test datasets of 175 objects each.
- The boundary of each object has been down-sampled to a vector of D = 128points. Each point of a shape is a 2D Euclidean coordinate. We represent this as a complex number x + iy. The data and code I provide uses this representation.
- Each shape has been normalized to a unit circle using a Procrustes transformation.
 This means:
 - There is a 1:1 correspondence between the 128-element vectors representing each shape, which facilitates analysis.
 - The expected position of a point on a shape is given by the corresponding point on the unit circle:

$$E[(x_i, y_i)] = (\cos \theta_i, \sin \theta_i), \text{ where } \theta_i = \frac{2\pi i}{D}$$

You can access the training dataset now from the course website.

Animal Objects

Linear Regressior

J. Elder

Polygon Approximations

Linear Regression

Linear Regression

I have provided code for 3 models. You will invent more.

Shape Model 1

Linear Regression

- This is a very simple generative model that assumes shape vectors are drawn from an isotropic multivariate normal distribution. (In other words the covariance matrix is a diagonal matrix with a constant diagonal.) There is a single scalar parameter: the variance.
- □ Functions:
 - ShapeModel1ML.m computes maximum likelihood estimate of the parameter
 - ShapeModel1Sample.m generates and displays random samples from the model
 - ShapeModel1Complete.m estimates missing portion of a given shape

Shape Model 1 Samples

Linear Regression

Shape Model 1 Shape Completions

Shape Model 2

Linear Regression

- In this generative model, shape vectors are assumed to be samples from a general multivariate normal distribution. There is only one parameter, the covariance matrix, but this represents D(D+1)/2 degrees of freedom (i.e., scalar unknowns).
- □ Functions:
 - ShapeModel2ML.m computes maximum likelihood estimate of the parameters
 - ShapeModel2Sample.m generates and displays random samples from the model
 - ShapeModel2Complete.m estimates missing portion of a given shape

Shape Model 2 Samples

Linear Regression

11

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Shape Model 2 Completions

Shape Model 3

Linear Regression

- This model is not generative: it simply uses linear interpolation to estimate the missing points.
- □ Functions:

13

ShapeModel3Complete.m - estimates missing portion of a given shape

Shape Model 3 Completions

Evaluation on Shape Completion

0.5 Root-Mean-Square error 0.4 0.3 0.2 0.1 0 2 3 1 Model

YORK UNIVERSITE

15

LINEAR REGRESSION

J. Elder

17

Linear Regression

Some of these slides were sourced and/or modified from Christopher Bishop, Microsoft UK

Outline

Linear Regression

- Maximum Likelihood Regression
- Regularized Regression
- Bayesian Regression
- Prediction
- Kernel Regression
- Bayesian Model Comparison

Linear Basis Function Models (1)

Linear Regression

Example: Polynomial Curve Fitting

19

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Linear Basis Function Models (2)

Linear Regression

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

 \square where $\phi_i(x)$ are known as basis functions.

- Typically, $\Phi_0(x) = 1$, so that W_0 acts as a bias.
- □ In the simplest case, we use linear basis functions : $\Phi_d(x) = x_d$.

Linear Basis Function Models (3)

Linear Regression

Polynomial basis functions:

 $\phi_j(x) = x^j.$

- □These are global
 - a small change in x affects all basis functions.
 - A small change in a basis function affects y for all x.

Linear Basis Function Models (4)

Linear Regression

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

□These are local:

- a small change in x affects only nearby basis functions.
- a change in a basis function affects y only for nearby x.
- μ_i and s control location and scale (width).

J. Elder

Linear Basis Function Models (5)

Linear Regression

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$

□ where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

□ Also local:

a small change in x affects only nearby basis functions.

a change in a basis function affects y only for nearby x.

 $\square \mu_i$ and s control location and scale (slope).

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Linear Regression

Assume observations from a deterministic function with added Gaussian noise:

 $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$ where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^T$ we obtain the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Linear Regression

□ Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

□ where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

 \Box is the sum-of-squares error.

J. Elder

26

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w},\beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

□ where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

Linear Regression

□ Maximizing with respect to the bias, W_0 , alone, we see that M_{-1}

$$w_{0} = \overline{t} - \sum_{j=1}^{M-1} w_{j} \overline{\phi_{j}}$$
$$= \frac{1}{N} \sum_{n=1}^{N} t_{n} - \sum_{j=1}^{M-1} w_{j} \frac{1}{N} \sum_{n=1}^{N} \phi_{j}(\mathbf{x}_{n}).$$

 \square We can also maximize with respect to eta , giving

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

27

Geometry of Least Squares

Linear Regression

Consider

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{\mathrm{ML}} = [oldsymbol{arphi}_1, \dots, oldsymbol{arphi}_M] \mathbf{w}_{\mathrm{ML}}.$$
 $\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T} \qquad \mathbf{t} \in \mathcal{T}$
 $\mathbf{v}_{\mathrm{N-dimensional}}$
 \mathbb{R} -dimensional

□ S is spanned

by
$$arphi_1,\ldots,arphi_{M}$$
.

W_{ML} minimizes the distance between t and y by making y the orthogonal projection of t onto S

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Sequential Learning

29

Linear Regression

Data items considered one at a time (a.k.a. online learning); use stochastic (sequential) gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

= $\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$

This is known as the least-mean-squares (LMS) algorithm. Issue: how to choose η? (We will not cover this.)

END OF LECTURE OCT 18, 2010

J. Elder

Assignment 1 Lab

31

Linear Regression

- □ Wed Nov 3, 2:30-5:30 (pm!)
- Bring your laptops!

Regularized Least Squares (1)

Linear Regression

Consider the error function:

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$

Data term + Regularization term

With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

□ which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

 λ is called the regularization coefficient.

Regularized Least Squares (2)

Linear Regressio

□ With a more general regularizer, we have

33

Regularized Least Squares (3)

Linear Regression

Lasso generates sparse solutions.

34

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Multiple Outputs (1)

Linear Regressio

Analogous to the single output case we have:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$$
$$= \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I}).$$

 \square Given observed inputs $~~{\bf X}=\{{\bf x}_1,\ldots,{\bf x}_N\}$, and targets $~{\bf T}=[{\bf t}_1,\ldots,{\bf t}_N]^{\rm T}$

we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_n | \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1} \mathbf{I})$$

$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_n - \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\right\|^2.$$

Multiple Outputs (2)

Linear Regressio

□ Maximizing with respect to W, we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{T}.$$

 \square If we consider a single target variable, t_k , we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}_k = \mathbf{\Phi}^{\dagger} \mathbf{t}_k$$

 \square where $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^T$, which is identical with the single output case.

Bayesian Linear Regression (1)

Linear Regression

Define a conjugate prior over W

37

 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$

Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

$$\Box$$
 where $p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \right)$$
$$\mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$$

J. Elder

Bayesian Linear Regression (2)

Linear Regression

□ A common choice for the prior is

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

□for which

$$egin{array}{rcl} \mathbf{m}_N &=& eta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \ \mathbf{S}_N^{-1} &=& lpha \mathbf{I} + eta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}. \end{array}$$

□Next we consider an example ...

J. Elder

Bayesian Linear Regression (3)

Linear Regression

0 data points observed

Bayesian Linear Regression (4)

Linear Regression

1 data point observed

40

J. Elder

Bayesian Linear Regression (5)

Linear Regression

2 data points observed

Bayesian Linear Regression (6)

Linear Regression

20 data points observed

Predictive Distribution (1)

Linear Regression

Predict t for new values of X by integrating over W:

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \, \mathrm{d}\mathbf{w}$$
$$= \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

□ where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}).$$

J. Elder

Predictive Distribution (2)

Linear Regression

Example: Sinusoidal data, 9 Gaussian basis functions,
 1 data point

Predictive Distribution (3)

Linear Regression

Example: Sinusoidal data, 9 Gaussian basis functions,
 2 data points

Predictive Distribution (4)

Linear Regression

 Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points

Predictive Distribution (5)

Linear Regression

Example: Sinusoidal data, 9 Gaussian basis functions,
 25 data points

Equivalent Kernel (1)

Linear Regressio

The predictive mean can be written

This is a weighted sum of the training data target values, t_n.

Equivalent Kernel (2)

49

For Gaussian basis X $k(\mathbf{x}, \mathbf{x}_i)$ $k(\mathbf{x}, \mathbf{x}_j)$ $k(\mathbf{x}, \mathbf{x}_k)$ \mathbf{x}_k \mathbf{x}_i \mathbf{x}_i

Weight of t_n depends on distance between X and X_n ; nearby X_n carry more weight.

Equivalent Kernel (3)

Linear Regression

Non-local basis functions have local equivalent kernels:

Equivalent Kernel (4)

Linear Regressio

The kernel as a covariance function: consider

$$\begin{aligned} \operatorname{cov}[y(\mathbf{x}), y(\mathbf{x}')] &= \operatorname{cov}[\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{w}, \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}')] \\ &= \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}') = \beta^{-1} k(\mathbf{x}, \mathbf{x}'). \end{aligned}$$

We can avoid the use of basis functions and define the kernel function directly, leading to Gaussian Processes (Chapter 6).

J. Elder

Equivalent Kernel (5)

Linear Regression

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = 1$$

□for all values of X; however, the equivalent kernel may be negative for some values of X.

Like all kernel functions, the equivalent kernel can be expressed as an inner product:

 $k(\mathbf{x}, \mathbf{z}) = \boldsymbol{\psi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\psi}(\mathbf{z})$

□where

$$oldsymbol{\psi}(\mathbf{x}) = eta^{1/2} \mathbf{S}_N^{1/2} oldsymbol{\phi}(\mathbf{x})$$

Bayesian Model Comparison (1)

- How do we choose the 'right' model?
- \square Assume we want to compare models M_i, i=1, ...,L, using data D; this requires computing

$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{M}_i)p(\mathcal{D}|\mathcal{M}_i).$$

Posterior

Prior

Model evidence or marginal likelihood

Bayes Factor: ratio of evidence for two models

 $\frac{p(\mathcal{D}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_i)}$

Bayesian Model Comparison (2)

54

Linear Regression

Having computed p(M_i|D), we can compute the predictive (mixture) distribution

$$p(t|\mathbf{x}, \mathcal{D}) = \sum_{i=1}^{L} p(t|\mathbf{x}, \mathcal{M}_i, \mathcal{D}) p(\mathcal{M}_i | \mathcal{D}).$$

□ A simpler approximation, known as model selection, is to use the model with the highest evidence.

Bayesian Model Comparison (3)

Linear Regression

For a model with parameters W, we get the model evidence by marginalizing over W

$$p(\mathcal{D}|\mathcal{M}_i) = \int p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i) p(\mathbf{w}|\mathcal{M}_i) \,\mathrm{d}\mathbf{w}.$$

Note that

$$p(\mathbf{w}|\mathcal{D}, \mathcal{M}_i) = \frac{p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i)p(\mathbf{w}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_i)}$$

Bayesian Model Comparison (4)

56

Linear Regression

Bayesian Model Comparison (5)

Linear Regression

□ Taking logarithms, we obtain

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|w_{\text{MAP}}) + \ln \left(\frac{\Delta w_{\text{posterior}}}{\Delta w_{\text{prior}}}\right)$$

Negative

 \square With M parameters, all assumed to have the same ratio $\Delta w_{\rm posterior}/\Delta w_{\rm prior}$, we get

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|\mathbf{w}_{\text{MAP}}) + M \ln \left(\frac{\Delta w_{\text{posterior}}}{\Delta w_{\text{prior}}}\right).$$

Negative and linear in M.

Bayesian Model Comparison (6)

Linear Regression

Matching data and model complexity

58

J. Elder

Limitations of Fixed Basis Functions

59

Linear Regressio

- M basis function along each dimension of a Ddimensional input space requires M^D basis functions: the curse of dimensionality.
- In later chapters, we shall see how we can get away with fewer basis functions, by choosing these using the training data.

